Hydrogen

Fuel Properties

-273 °C

9.5 MJ/L

MGO 35 MJ/L

Gray 95%

< 1%

of hydrogen production is low-C

Lifecycle Emissions

~50% H

PILOT STAGE

of LNG infrastructure could be transitioned

57%

of global H2 pipelines are in the U.S.

Infrastructure

2022 world demand 95 million metric tons

2030 renewable capacity 27 million metric tons

> 2022 renewable capacity <1 million metric tons

\$240 /kW

Propulsion system

\$2,960/ **m3**

Fuel storage

Vessel upgrades

\$3M

0.008 -0.050 LH2

0.021 0.023 MGC

Costs

(\$/MJ)

mmonia

Fuel Properties

-33 °C

12.7 MJ/L

MGO 35 MJ/L

Blue 1%

< .01%

Lifecycle Emissions

NH3

Gray

99%

of ammonia production is green

of C emissions occur during **H2 synthesis** SCR tech can reduce stack emissions

VtW CO2e (kg/MJ)

WtW Low WtW High 0.200 0.150 0.100 0.050 0.000 Brown Blue Green MGO

90%

NH3 is a more effective carrier of H2 energy

Infrastructure

2020 world demand

182 million metric tons

PILOT STAGE

~63%

of global NH3 pipelines are in the U.S.

2040 renewable capacity 71 million metric tons

> 2020 renewable capacity <1 million metric tons

\$433 /kW

Vessel capital costs

CAPEX estimates vary \$400-847/kW

Costs

~17%

cheaper fuel than methanol cheaper fuel than hydrogen

NH3

0.030-

0.099

0.021 0.023 MGC (\$/MJ)

~32%

Methanol

Fuel Properties

20 °C

15.9 MJ/L

MGO 35 MJ/L

Bio/E-1%

Conventional 99%

<1%

of methanol production is green

CO₂

After treatment can reduce stack emissions

Bio-methanol can have net-negative GHG emissions depending on feedstock and process

Bunker-ready since 2023

vessels on the order book

exceeding orders for LNG or any other alt. fuel

Infrastructure

2022 world demand

100 million metric tons

DEPLOY

There are several methanol plants in service or under construction In the U.S.

2050 renewable capacity 135 million metric tons

> 2022 renewable capacity <1 million metric tons

\$600 /kW

Engine CAPEX

Containership retrofit

\$10M

Storage requirements

0.014 -0.107

MeOH

0.021 0.023 MGC

Costs

(\$/MJ)

2.5x

Biofuels

Fuel Properties

Gasification

Transesterification

Hydrogenation

Temps < -3°C = fuel solidification

14-43

°C

19.2 MJ/L

MGO 35

MJ/L

Generally sulfur-free fuels

WtW varies widely depending on fuel type, feedstock, production and transportation assumptions

Biofuels have reduced NOx

except for some fuel types under low or high loads

Lifecycle Emissions

Biofuels can be blended

with conventional fuels 0.93

> million tons of blended biofuels were bunkered in 2022

Infrastructure

2022 world demand

170 million liters

2030 renewable capacity

< 8.5% of maritime demand

"Drop-in fuels"

000

commercial scale limited by sourcing sustainable feedstocks

As drop-in fuels, CAPEX is minimal.

Additional cost primarily bunkering price due to lower energy of biofuels

FAME is the most common maritime biofuel

0.020 -0.049

FAME

Electrification Fuel Properties

15 °C

Other 8%

LI-ION

Natural Gas 36%

Lifecycle Emissions

Batteries' potential

- -77% acidification
- -88% eutrophication
- -78% ozone creation

54%

of California's grid is non-GHG and/or renewable energies

55%

carbon dioxide abatement

benefits of shore power are limited to at-berth operations

Requires specialized at-berth utility of dedicated system connections

Shore power is available at 10 U.S. Ports

increase in CA state electricity demand by 2045

relative to 2022

Infrastructure

2023 active fleet

209 battery-assisted

36 battery-propelled

<0.1% of the global fleet's total installed engine power or DWT

REGEARCH STAGE

\$30.5 B infrastructure cost to meet demand

Container: \$1.14 per TEU

Cruise: \$4.65 per passenger

Tanker: <0.01 per gallon oil

RoRo: \$7.66 per vehicle

\$7-83 M

Costs

CAPEX per berth upgrade

Port of Long Beach spent \$185 million to facilitate its shore power

The state of the s

\$500-900 K **Vessel upgrade CAPEX**

estimated costs of the new at-berth regulation